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Blue Gene/Q : Power-Efficient Computing  
System         date   GHz  cores/rack largest-system  peak-PFlops 
Blue Gene/L   ~2004   0.70    2K         104 racks       ~0.6 
Blue Gene/P   ~2008   0.85    4K          72 racks       ~1.0 
Blue Gene/Q   ~2012   1.60   16K          96 racks      ~20.1 

 

#1 Top 500 List 06/2012     : 16.3 PFlops   96-rack Sequoia system LLNL  

#2 Top 500 List 11/2101  … the #1 system recorded 17.6 PFlops 

 

#1 Green 500 List 06/2012 : 2.1GFlops/Watt 

#5 Green 500 List 11/2012  … #1 system recorded 2.5 GFlops/Watt  

 

Blue Gene/Q : 4 threads/core * 16K cores/rack * 96 racks = 6,291,456 threads 

How about applications … how can you tell if you are using the cores efficiently? 

Instrument the code with hardware counters … MPI profiling interface is handy. 

Measure the instruction mix and instruction throughput. 

IPC = instructions per cycle per core is a good metric. 

 

Some lessons learned from jobs with more than one million processes. 
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Blue Gene/Q Hardware Overview 

16 cores/node, 16 GB memory/node, 1024 nodes/rack 

5D torus network, 2GB/sec per link, 40 GB/sec off-node bandwidth 

System on a chip : cores, L2 cache, network devices are integrated on the chip 

A2 cores: simple in-order execution 1.6 GHz frequency, no ILP 

 Two execution units: XU for Integer/Load/Store, AXU for Floating-Point 

 Six cycle latency, single-cycle throughput for floating-point operations. 

 Four hardware threads … four sets of registers … the key to performance. 

 At most one instruction can be completed per cycle per thread. 

 At most two instructions can be completed per cycle per core, one from 

 each of the two execution units. 

 QPX unit for 4-wide SIMD operations => peak is 8*1.6 = 12.8 GFlops/core 

 16 KB L1 D-cache, 4KB prefetch buffer per core 

32 MB shared L2 cache with a full crossbar switch connecting all cores 
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BG/Q Daxpy   y(:) = a*x(:) + y(:)    

0

50

100

150

200

250

300

350

400

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

Bytes/Core

B
a
n

d
w

id
th

 (
G

B
/s

e
c
) 

p
e
 N

o
d

e

2thds/core QPX
1thd/core QPX
2thds/core noQPX
1thd/core noQPX
BGP-SIMD
BGP-noSIMD



Blue Gene Application Performance     IBM Corporation 

Stream Benchmark
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BGQ Link Bandwidth Test
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Blue Gene/Q Software Overview 

Light-weight kernel on compute nodes, no context switches. 

 

GNU and IBM XL compilers, Fortran, C, C++. 

 

MPI optionally with OpenMP or Pthreads (and other comm methods). 

 

File I/O is handled by separate I/O nodes; ratio is 1:32-128 io:compute 

 

Real memory only, no paging, 16 GBytes per node. 

 

Processes/node MB/process %hardware 

64 206 80.4% 

32 460 89.8% 

16 970 94.7% 

8 1929 94.2% 

4 3969 96.9% 

Most applications will 

use 4-32 processes 

per node. 

Threading makes 

more flexible use of 

system resources. 
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Instrumentation : Hardware Counters, MPI Data,  
Statement-level Profiling Data 

Strategy : do data-reduction on the fly, save key information 

Example: at the end of program execution (MPI_Finalize) one has  

information about the work distribution, MPI timing, etc. … use it. 

 

BGPM : Blue Gene Performance Monitor provides many counters for 

the A2 cores, caches, memory, and network devices.   

Aggregate counts at the process level, node level, and/or job level. 

 

PMPI interface : collect cumulative information for MPI routines 

Optionally collect the detailed time-history of MPI events. 

 

Statement-level profiling : use support for the profil() routine in GNU libc.a. 

Get basic histogram data : #hits at each program counter, map hits to 

source lines using methods provided by GNU binary-file descriptor library. 

 

Static linking with the instrumentation library is the default on BGQ. 



Blue Gene Application Performance     IBM Corporation 

Save Data from Selected Processes 

Way back when : write one small file per process 

 

Now : don’t want a million files … best to be selective about what you save. 

 

Simple strategy for MPI applications : when the app reaches MPI_Finalize(), 

one can determine the ranks with the minimum, median, and maximum times 

in MPI … save detailed data for those ranks … histogram the distribution. 

 

Optionally save all data in one file. 

 

In most cases, the rank that spent the least time in MPI did the most work. 

 

Can use the same strategy based on hardware-counter data. 

 

Can maintain low overhead non-intrusive performance monitoring at full scale. 

 

Scaling limitation = memory!  Any data-structure with size proportional 

to #ranks will eventually be a problem. 
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MPI profile data for LAMMPS, 1024K MPI ranks 

Data for MPI rank 524474 of 1048576 
Times and statistics from MPI_Init() to MPI_Finalize(). 
----------------------------------------------------------------- 
MPI Routine                  #calls     avg. bytes      time(sec) 
----------------------------------------------------------------- 
MPI_Comm_size                     4            0.0          0.000 
MPI_Comm_rank                    10            0.0          0.000 
MPI_Send                      12618        25159.1          3.360 
MPI_Irecv                     12618        25154.3          0.069 
MPI_Sendrecv                   1188            4.0          0.248 
MPI_Wait                      12618            0.0          1.308 
MPI_Bcast                        69          183.0          0.083 
MPI_Barrier                       2            0.0          0.001 
MPI_Allreduce                   191            7.2          0.428 
----------------------------------------------------------------- 
MPI task 524474 of 1048576 had the minimum communication time. 
total communication time = 5.497 seconds. 
total elapsed time       = 143.969 seconds. 
heap memory used         = 64.301 MBytes. 

This LAMMPS problem scales nearly perfectly beyond 1M processes.  The 

fraction of time in messaging remains 3-4% from a single node to 72 racks. 
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MPI profile data : LAMMPS, 1024K MPI ranks 

Histogram of times spent in MPI 
    time-bin    #ranks 
       5.497        10 
       6.783        53 
       8.070      1199 
       9.357     13983 
      10.644     65604 
      11.931    131666 
      13.218    230704 
      14.505    238892 
      15.791    205515 
      17.078     89530 
      18.365     43006 
      19.652     19365 
      20.939      7149 
      22.226      1738 
      23.513       162 
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Roughly “normal” distribution of times spent in MPI over all ranks.  

The computational load is approximately balanced. 
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MPI profile data : DNS3D, 3072^3 grid, 768K MPI Ranks 

Data for MPI rank 0 of 786432 
Times and statistics from summary_start() to summary_stop(). 
------------------------------------------------------------ 
MPI Routine           #calls     avg. bytes      time(sec) 
------------------------------------------------------------ 
MPI_Allreduce            894           53.3          0.393 
MPI_Alltoallv          10728          384.0         91.164 
------------------------------------------------------------ 
total communication time = 91.557 seconds. 
total elapsed time       = 137.843 seconds. 
heap memory used         = 38.371 MBytes. 
heap memory available    = 783.617 MBytes. 
 
------------------------------------------------------------ 
Message size distributions: 
 
MPI_Allreduce        #calls    avg. bytes      time(sec) 
                        596          16.0          0.092 
                        298         128.0          0.301 
 
MPI_Alltoallv        #calls    avg. bytes      time(sec) 
                       5364         192.0         34.062 
                       5364         576.0         57.102 
------------------------------------------------------------- 

Parallel 3D FFTs using the p3dfft library and MPI_Alltoallv with 2D topology 
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MPI profile data : DNS3D, 3072^3 grid, 768K ranks 

 512x1536 process grid, 786432 MPI ranks 
 
 elapsed time = 137.84 seconds 
 
 MPI Time              FP op count             
time-bin  #ranks         flop-bin   #ranks 
 79.192     1468        1.862e+10    1741 
 80.366       68        1.912e+10  413445 
 81.540        0        1.962e+10  369710 
 82.714        0        2.012e+10       0 
 83.888        0        2.062e+10       0 
 85.062        0        2.112e+10       0 
 86.235        0        2.163e+10       0 
 87.409        0        2.213e+10       0 
 88.583        0        2.263e+10       0 
 89.757        0        2.313e+10     225 
 90.931   784895        2.363e+10    1307    
 92.105        1        2.413e+10       4 

Some load-imbalance: a total of 1536 MPI ranks have about 20% more 

floating-point work, and all other MPI ranks wait for them.  The ranks with 

extra work are ranks with pex = 511, where the 2D coords are (pex, pey). 

512 

1536 

2D process grid 
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MPI Timing Data Mapped to the Simulation Domain 

Total time in MPI 

~32K MPI ranks 

Blue = smallest time 

Red = largest time 

Load Imbalance 

GFDL atmosphere 

model – Chris Kerr. 

Yellow bands arise 

from ranks that have 

one extra grid point.  

Ranks in the red 

squares have one 

extra grid point in 

each of two 

dimensions. 
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Time-history of MPI events : GTC at 128K MPI ranks 

Must be selective, for example capture data for just a few time steps, 

otherwise data volume is excessive.  Can do event tracing at scale. 
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Statement-Level Profiling with the profil() Routine 

Interrupt 100 times/sec; histogram = #hits at each program counter. 

 

Use the same criteria as before to save selected profile data. 

 

The profil() routine is a useful relic … it needs updating … histogram buffer 

is unsigned short, 16-bits, enough for 64K samples per address. 

tics |   Source 
 1265|   disc = bb*bb - aa*cc 
  151|   if (disc .lt. 0.0) go to 4 
 6629|   d = sqrt(disc) 
 4346|   l1 = (d - bb)/aa 
  145|   if (l1 .ge. 1.0d-10) then 
  177|      z1     = z + w*l1 
  921|      zzidks = zz(id,ks) 
  874|      zzidks1= zz(id,ks+1) 
  337|      isign  = (z1.lt.zzidks  .and. z1.lt.zzidks1 ) .or. 
     | &             (z1.gt.zzidks1 .and. z1.gt.zzidks  ) 
   53|      if (isign) l1 = 1000.0d0 
  140|      if (l1 .lt. lmin) lmin = l1 
     |   endif 
     | 
 5278|   l2 = (-bb - d)/aa 

Sequoia SPHOT Benchmark 
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Some problems occur with millions of processes 

32-bit integers overflow; two victims were DNS3D and GTC. 
It is past time for 64-bit default integer size.  Current fix is to find where 
integer overflow occurs and use 8-byte integer types where it matters. 
 
64-bit integers are not always adequate.  Example: sum 64-bit counters 
on enough processors : 1 GHz for 1 day on 1M cores => ~9E19 counts, 
but a 64-bit integer can hold only ~2E19 counts.  Current fix is to do sums 
with 64-bit floating-point types. 
 
More than a million core files is a bad idea … I know from experience. 
 
Memory utilization often grows with increasing #processes.  Any data 
structure linear in #processes will eventually spell trouble. 
 
Reducing the number of processes and using more threads can help. 
Mixed distributed-memory/shared-memory programming is here to stay. 
 
Applications with excellent locality, no global data structures, have an 
advantage when it comes to scaling to millions of processes. 
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Example of code tuning for BG/Q : GYRO 

General Atomics code : https://fusion.gat.com/theory/Gyro 

 

Objectives : Extend OpenMP coverage and scaling 

         

                   Make minor adjustments to improve computation and 

                   communication performance.  

 

 

1 2 4 8 16

0.00

2.00

4.00

6.00

8.00

10.00

12.00

nl02a OpenM P Speed-up

#  Th re a d s

Blue = original code 

Red = tuned code 

Performance is shown 

relative to orig. code with 

1 OpenMP thread. 



Blue Gene Application Performance     IBM Corporation 

GYRO : Optimization example - original code  

  p_nek_loc = 0 
  do p_nek=1+i_proc_1,n_nek_1,n_proc_1 
    do is = 1, n_gk 
      p_nek_loc = p_nek_loc+1 
      . . . 
 
      gyro_uv(:,:,p_nek_loc,is,1) = (0.0,0.0) 
      kyro_uv(:,:,p_nek_loc,is,1) = (0.0,0.0) 
 
!$omp parallel do default(shared) private(i_diff,m) 
      do i=1,n_x 
        do i_diff=-m_gyro,m_gyro-i_gyro 
          do m=1,n_stack 
            gyro_uv(m,i,p_nek_loc,is,1) = gyro_uv(m,i,p_nek_loc,is,1) +& 
                 w_gyro(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1) 
            kyro_uv(m,i,p_nek_loc,is,1) = kyro_uv(m,i,p_nek_loc,is,1) +& 
                 w_gyro_rot(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1) 
          enddo 
        enddo 
      enddo 
!$omp end parallel do 
      … 
    end do 
  end do 

Issues: OpenMP parallel region is inside nested loops => repeat the overhead. 

            Large arrays are set to zero outside the OpenMP parallel region. 
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GYRO : Optimization example - tuned code 

!$omp parallel private(p_nek_loc, . . .)  
  p_nek_loc = 0 
  do p_nek=1+i_proc_1,n_nek_1,n_proc_1 
    do is = 1, n_gk 
      p_nek_loc = p_nek_loc+1 
      . . . 
 
      do i=ibeg, iend 
        gyro_uv(:,i,p_nek_loc,is,1) = (0.0,0.0) 
        kyro_uv(:,i,p_nek_loc,is,1) = (0.0,0.0) 
        do i_diff=-m_gyro,m_gyro-i_gyro 
          do m=1,n_stack 
            gyro_uv(m,i,p_nek_loc,is,1) = gyro_uv(m,i,p_nek_loc,is,1) +& 
                 w_gyro(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1) 
            kyro_uv(m,i,p_nek_loc,is,1) = kyro_uv(m,i,p_nek_loc,is,1) +& 
                 w_gyro_rot(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1) 
          enddo 
        enddo 
      enddo 
      … 
    end do 
  end do 
!$omp end parallel 

OpenMP parallel region is outside the nested loops, block partitioned “i” loop. 

Large arrays are set to zero inside the OpenMP parallel region. 



Blue Gene Application Performance     IBM Corporation 

GYRO : Optimization example – transpose operation 

Original code: transpose (alltoall) is called in a loop using short messages 
      |     call rTRANSP_INIT(n_i,n_j,n_k,NEW_COMM_1) 
      |     do m=1,n_stack 
   374|        call rTRANSP_DO(f_coll(m,:,:),h_C(m,:,:)) 
      |     enddo 
      |     call rTRANSP_CLEANUP 
 

Tuned code uses one alltoall and all memory accesses are stride-1 

 
      |     call rTRANSP_INIT(n_i,n_j,n_k,n_stack,NEW_COMM_1) 
      |     call rTRANSP_DO(f_coll,h_C) 
      |     call rTRANSP_CLEANUP 
 

Result is far fewer calls to MPI_Alltoall, using larger messages. 

Eliminates array-section copies at “bad” stride. 

Roughly 3x improvement for the collision code-section. 
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BGPM – Blue Gene Performance Monitor 

Can use 24 counters per A2 core, so just 6 counters per hardware  

thread when counting on all four hardware threads. 64-bit counters. 

 

Good default choice of A2 counters: 
PEVT_LSU_COMMIT_CACHEABLE_LDS   load instructions 
PEVT_L1P_BAS_MISS               load missed L1P buffer 
PEVT_INST_XU_ALL                XU instructions : int/ld/st/br 
PEVT_INST_QFPU_ALL              AXU = FPU instructions 
PEVT_INST_QFPU_FPGRP1           weighted floating-point ops 
 

Use along with L2 counters: 
PEVT_L2_HITS                    L2 hits 
PEVT_L2_MISSES                  L2 misses 
PEVT_L2_FETCH_LINE              128-byte lines loaded from memory 
PEVT_L2_STORE_LINE              128-byte lines stored to memory 
 

The A2 counters are hardware-thread specific.  The L2 counters are shared 

across the node.  These counters give instruction throughput, instruction mix, 

information about load misses at all levels of cache/memory, and the load/store 

traffic to memory.  Other counters are needed to get more details. 
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SPHOT : Instruction Mix, 16K cores 

SPHOT XU AXU 

Int/Ld/St/Br 61.57 38.43 Floating-Point 

FP Loads 17.94 26.82 FP single 

FP Stores 1.82 47.25 FP madd 

Quad Loads 0.00 0.42 FP div 

Quad Stores 0.00 0.12 FP sqrt 

Int Loads 11.61 19.97 FP other 

Int Stores 7.74 2.76 FP move 

Branch 14.82 0.00 Quad single 

Int Arithmetic 45.32 0.00 Quad madd 

Int Other 0.74 2.67 Quad other 

0.00 Quad move 

Sum 100.00 100.00 Sum 

Instruction mix is dominated by integer, load, store, branch operations. 
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SPHOT : Speed-up using multiple threads per core 

threads/core 1 2 4 units 

performance 1.00 1.88 2.94 relative 

total instr 1.00 1.00 1.01 relative 

issue rate 0.32 0.60 0.94 instr/cycle 

GFlops/node 4.9 9.2 14.5 

L1 91.2 91.2 88.8 % 

L1P 0.6 0.2 0.1 % 

L2 8.1 8.5 11.0 % 

DDR 0.0 0.0 0.0 % 

LD-BW 0.0 0.0 0.0 Bytes/cycle 

ST-BW 0.0 0.0 0.0 Bytes/cycle 

TOT-BW 0.0 0.0 0.0 Bytes/cycle 

SPHOT has the highest speed-up ~3x for 4 threads per core.  The 

main performance issue is pipeline stalls, not data loads/stores. 
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GTC : Instruction Mix , main loop, 8K cores 

GTC XU AXU 

Int/Ld/St/Br 65.3 34.7 Floating-Point 

FP Loads 27.3 37.5 FP single 

FP Stores 8.3 38.5 FP madd 

Quad Loads 0.0 0.3 FP div 

Quad Stores 0.0 0.2 FP sqrt 

Int Loads 18.5 20.8 FP other 

Int Stores 6.4 2.3 FP move 

Branch 8.4 0.0 Quad single 

Int Arithmetic 29.6 0.0 Quad madd 

Int Other 1.5 0.4 Quad other 

0.0 Quad move 

Sum 100.0 100.0 Sum 

Roughly 2:1 ratio of integer/load/store/branch operations to floating-point. 
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GTC : Speed-up using multiple threads per core. 

Get 2.25x speedup using 4 threads/core, very little contention for caches, 

modest memory bandwidth requirement, good total instruction throughput 

=> efficient use of the cores. 

threads/core 1 2 4 units 

performance 1.00 1.64 2.25 relative 

total instr 1.00 1.01 1.06 relative 

issue rate 0.30 0.50 0.71 instr/cycle 

GFlops/node 3.8 6.2 8.5 GFlops/node 

L1 94.3 94.3 94.3 % 

L1P 1.9 1.6 1.4 % 

L2 3.1 3.2 3.2 % 

DDR 0.8 1.0 1.2 % 

LD-BW 2.0 3.5 5.9 Bytes/cycle 

ST-BW 0.8 1.5 2.8 Bytes/cycle 

TOT-BW 2.9 4.9 8.7 Bytes/cycle 
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LAMMPS : Instruction Mix, main loop, 16K cores 

LAMMPS XU AXU 

Int/Ld/St/Br 69.7 30.3 Floating-Point 

FP Loads 23.4 43.6 FP single 

FP Stores 7.1 43.9 FP madd 

Quad Loads 0.0 0.1 FP div 

Quad Stores 0.1 0.0 FP sqrt 

Int Loads 26.7 12.4 FP other 

Int Stores 2.7 0.0 FP move 

Branch 8.6 0.0 Quad single 

Int Arithmetic 31.0 0.0 Quad madd 

Int Other 0.3 0.0 Quad other 

0.0 Quad move 

Sum 100.0 100.0 Sum 

More than 2:1 ratio of integer/load/store/branch instructions to floating-point. 



Blue Gene Application Performance     IBM Corporation 

LAMMPS : Speed-up using multiple threads per core 

threads/core 1 2 4 units 

performance 1.00 1.61 2.39 relative 

total instr 1.00 0.99 1.05 relative 

issue rate 0.25 0.39 0.62 instr/cycle 

GFlops/node 2.8 4.5 6.6 

L1 92.8 89.9 87.5 % 

L1P 0.8 1.2 1.2 % 

L2 5.9 8.5 10.8 % 

DDR 0.5 0.5 0.5 % 

LD-BW 1.2 1.9 2.9 Bytes/cycle 

ST-BW 0.4 0.7 1.2 Bytes/cycle 

TOT-BW 1.6 2.6 4.1 Bytes/cycle 

Get ~2.4x speed-up with four threads/core, in spite of clear evidence of 

contention for L1 D-Cache.  Memory bandwidth requirement is low, 

instruction issue rate is good. 
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Held-Suarez : Instruction Mix, main loop, 32K cores  

Held-Suarez XU AXU 

Int/Ld/St/Br 56.7 43.3 Floating-Point 

FP Loads 17.9 48.7 FP single 

FP Stores 13.4 15.5 FP madd 

Quad Loads 0.7 1.4 FP div 

Quad Stores 0.3 0.0 FP sqrt 

Int Loads 12.6 29.1 FP other 

Int Stores 6.7 4.0 FP move 

Branch 10.4 0.0 Quad single 

Int Arithmetic 35.5 0.0 Quad madd 

Int Other 2.3 1.3 Quad other 

0.0 Quad move 

Sum 100.0 100.0 Sum 

Closer balance for the two execution units, but still more Int/Ld/St/Br. 
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Held-Suarez : Speed-up using multiple threads per core. 

threads/core 1 2 4 units 

performance 1.00 1.72 2.18 relative 

total instr 1.00 1.03 1.10 relative 

issue rate 0.37 0.66 0.89 instr/cycle 

GFlops/node 5.3 9.2 11.9 GFlops/node 

L1 93.0 93.4 93.0 % 

L1P 6.4 5.8 5.2 % 

L2 0.1 0.0 0.5 % 

DDR 0.5 0.8 1.2 % 

LD-BW 1.1 3.1 6.6 Bytes/cycle 

ST-BW 1.1 2.9 4.8 Bytes/cycle 

TOT-BW 2.3 6.0 11.4 Bytes/cycle 

Get ~2.18x speeed-up with four threads per core.  There is some 

instruction inflation, and significant requirement for memory bandwidth.  

The total instruction issue rate is very good. 
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NEK : Instruction Mix, 64K cores 

NEK XU AXU 

Int/Ld/St/Br 72.9 27.1 Floating-Point 

FP Loads 28.3 11.8 FP single 

FP Stores 8.7 41.6 FP madd 

Quad Loads 4.5 0.0 FP div 

Quad Stores 2.1 0.0 FP sqrt 

Int Loads 11.0 1.7 FP other 

Int Stores 5.7 0.4 FP move 

Branch 11.3 1.7 Quad single 

Int Arithmetic 26.9 28.5 Quad madd 

Int Other 1.6 0.0 Quad other 

14.3 Quad move 

Sum 100.0 100.0 Sum 

QPX multiply-add instructions are mainly from matrix-matrix 

multiplication routines, integer/load/store/branch instructions dominate. 
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NEK : Speed-up using multiple MPI ranks per core 

threads/core 1 2 4 units 

performance 1.00 1.39 1.46 relative 

total instr 1.00 1.08 1.20 relative 

issue rate 0.32 0.50 0.57 instr/cycle 

GFlops/node 7.5 10.5 11.0 GFlops/node 

L1 92.4 91.0 88.9 % 

L1P 6.3 6.8 6.8 % 

L2 0.6 1.2 3.0 % 

DDR 0.7 0.9 1.3 % 

LD-BW 4.2 6.2 7.7 Bytes/cycle 

ST-BW 1.8 2.7 3.3 Bytes/cycle 

TOT-BW 6.1 8.9 11.0 Bytes/cycle 

The total instruction count increases (near the strong-scaling limit) and 

the memory-bandwidth requirement is significant.  The speed-up is 

limited, but the instruction throughput is still good. 
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UMT : Instruction Mix, 16K cores 

UMT XU AXU 

Int/Ld/St/Br 79.0 21.0 Floating-Point 

FP Loads 15.8 24.8 FP single 

FP Stores 6.6 18.5 FP madd 

Quad Loads 7.4 0.2 FP div 

Quad Stores 4.6 0.0 FP sqrt 

Int Loads 12.9 3.5 FP other 

Int Stores 5.7 0.1 FP move 

Branch 11.0 19.1 Quad single 

Int Arithmetic 34.4 28.2 Quad madd 

Int Other 1.7 2.3 Quad other 

3.4 Quad move 

Sum 100.0 100.0 Sum 

Good QPX code generation by the compiler; integer, load, store, branch 

instructions dominate the mix. 
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UMT : Speed-up using multiple threads per core 

threads/core 1 2 4 units 

performance 1.00 1.32 1.30 relative 

total instr 1.00 1.00 1.02 relative 

issue rate 0.28 0.38 0.38 instr/cycle 

GFlops/node 5.8 7.6 7.5 

L1 93.1 92.4 89.1 % 

L1P 5.4 5.3 5.5 % 

L2 0.0 0.0 2.1 % 

DDR 1.5 2.3 3.4 % 

LD-BW 7.1 10.1 10.2 Bytes/cycle 

ST-BW 2.6 3.4 3.4 Bytes/cycle 

TOT-BW 9.7 13.5 13.6 Bytes/cycle 

Speed-up is limited by bandwidth to memory. 
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Performance Data Repository    

Collect performance data and store them into Mysql database 
Help to characterize applications and machine usage efficiently 
Uniform storage format to support queries and presentation 
 

DB2 

bgqsn2 

grotius 

Blue Gene/Q 

Compute nodes 

mgmt 

perf. data 

submit 

Instrumented 

binary 

Mysql 

bgqfen6 

grotius 

Chart from I-Hsin Chung, IBM Watson 
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Average Application Characteristics vs. Key Benchmarks 

%FXU %FPU %Max Flops %DDR BW IPC 

App AVG 70.5 29.5 5.7 40.7 0.56 

Linpack 43.8 56.2 74.9 22.6 1.34 

Graph 500 100.0 0.0 0.0 75.9 0.34 

Example algorithms: 

 sparse matrix-vector multiplication : 80% Int/Ld/St/Br    20% FPU 

 array update y(:) = a*x(:) + y(:)         78% Int/Ld/St/Br    22% FPU 

IPC = instructions completed per cycle per core is a good indicator of 

how much work you are getting out of each core. 

The general characteristics of most scientific applications are pretty 

similar, and are really different from some popular benchmarks. 
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Conclusions 

The Blue Gene/Q design, low-power simple cores, four hardware 
threads per core, results in high instruction throughput, and thus 
exceptional power efficiency for applications.  Can effectively fill in 
pipeline stalls and hide latencies in the memory subsystem. 
 
The consequence is low performance per thread, so a high degree 
of parallelization is required for high application performance. 
 
Traditional programming methods (MPI, OpenMP, Pthreads) hold 
up at very large scales.  Memory costs can limit scaling when there 
are data-structures with size linear in the number of processes, 
threading helps by keeping the number of processes manageable. 
 
Detailed performance analysis is viable at >10^6 processes but 
requires care.  On-the-fly performance data reduction has merits. 
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